Molecular Symmetry - Posot groups Symmetry props. It volcales closely feed to many properties (D) Electore Structure + MO Structure (D) Peactivity (3) Molecular Vi Stratons + EAS we claracterse symmetry of notcules by placing them outs point La Point Coup - defines a collection of symmetry elevents le print at when at which all symmetry clarent intiged CL (E) No Symmetry Cs (o) one mirror plane exists Clam [FPC\Br Sociz CI Ci (i) inversion contr de chloro defloro ethane CIMIN S Dn Cn (n I Cz HIN PHZ = NN (en) Ond Cn n I Cz nod 302 - 2 Bisect the I Cz Only Cn, n L Cz, on 5 = Ge Aromate System ## Points of hyler Symmetry Cov Coo, Ov Doh Co, co L Cz, on, or or * Any trear moleule w/ an inversion conser Td = telahedal 8 C3, 3Cz, 6S4, 602 6 S4, 8S6, 30m, 60d On = Octobedral C1-W-C1 8C3, GCp, 3C2 C1 C1 Ih = Icosahedol 0, T, I TABLE 4.2 Groups of Low Symmetry | Group | Symmetry | Examples | | |-------|--|---|----------------| | C_1 | No symmetry other than the identity operation | CHFCIBr | F C Br | | C_s | Only one mirror plane | H ₂ C=CClBr | H C=C Cl | | C_i | Only an inversion center; few molecular examples | HClBrC—CHClBr
(staggered conformation) | Br H C-C Cl Br | TABLE 4.3 Groups of High Symmetry | TABLE 4.3 | Groups of High Symmetry | | | |----------------|--|--|--| | Group | Description | Examples | | | $C_{\infty v}$ | These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion. | C_{∞} H—CI | | | $D_{\infty h}$ | These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center. | $C_{\infty} O = C_{2}$ | | | T_d | Most (but not all) molecules in this point group
have the familiar tetrahedral geometry. They have
four C_3 axes, three C_2 axes, three S_4 axes, and six
σ_d planes. They have no C_4 axes. | H
C
H | | | O_{\hbar} | These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion. | F-S-F | | | I_h | Icosahedral structures are best recognized by their six C_5 axes, as well as many other symmetry operations—120 in all. | B ₁₂ H ₁₂ ²⁻ with BH
at each vertex of
an icosahedron | | In addition, there are four other groups, T, T_R, O, and I, which are rarely seen in nature. These groups are discussed at the end of this section. | Point group | Characteristic symmetry elements | Comments | |-------------------|--|--| | C_{\circ} | E , one σ plane | | | C: | E, inversion centre | | | C_n | E, one (principal) <i>n</i> -fold axis | | | $C_{nv}^{''}$ | E, one (principal) <i>n</i> -fold axis, $n \sigma_v$ planes | | | $C_{n\mathrm{h}}$ | E, one (principal) <i>n</i> -fold axis, one σ_h plane, one S_n -fold axis which is coincident with the C_n axis | The S_n axis necessarily follows from the C_n axis and σ_h plane
For $n = 2$, 4 or 6, there is also an inversion centre | | $D_{n\mathrm{h}}$ | E, one (principal) <i>n</i> -fold axis, n C_2 axes, one σ_h plane, n σ_v planes, one S_n -fold axis | The S_n axis necessarily follows from the C_n axis and σ_h plane
For $n = 2$, 4 or 6, there is also an inversion centre | | D_{nd} | E, one (principal) <i>n</i> -fold axis, n C_2 axes, n σ_v planes, one S_{2n} -fold axis | For $n = 3$ or 5, there is also an inversion centre | | $T_{ m d}$ | | Tetrahedral | | $O_{ m h}$ | | Octahedral | | $I_{ m h}$ | | Icosahedral |